DijagnostikaIzlaganje sa skupaMeđunarodna suradnja

Dijagnostika bolesti kvrgave kože

English ▼

Ivancho Naletoski
Animal Production and Health Section, Joint FAO/IAEA, Division for Nuclear Applications in Food and Agriculture, Vienna, Austria
E-mail: I.Naletoski@iaea.org

Ivancho Naletoski, Animal Production and Health Section, Joint FAO/IAEA, Division for Nuclear Applications in Food and Agriculture, Vienna, Austria
Bolest kvrgave kože tradicionalno je smatrana endemskom u Africi i egzotičnom u Europi. U Tursku je bolest ušla u kolovozu 2013. godine i do srpnja 2016. godine u zemlji je uzrokovala 237 epidemija. U kolovozu 2015. godine, bolest se proširila u Grčku uzrokujući 218 epidemija do kolovoza 2016. godine. Bolest se brzo proširila u Bugarsku i Makedoniju (travanj 2016.), u Srbiju (lipanj 2016.), Crnu Goru (srpanj 2016.) uzrokujući 202, 181, 219 i 63 epidemije.

Europske zemlje nisu imale iskustva s kontrolom bolesti, međutim, činilo se da nedostaju tehnike brze i osjetljive detekcije virusa, što je neophodno za znanstveno utemeljeno donošenje odluka i odgovarajuća postupanja u slučaju bolesti.

APHS podprogram FAO/IAEA u Beču ima povijesno iskustvo u razvoju i širenju takvih alata među zemljama članicama FAO i IAEA. Stoga je, u skladu sa svojim mandatom, provedeno nekoliko hitnih akcija kako bi se podržale zemlje članice u njihovim nastojanjima kontrole BKK. Ove akcije uključivale su slijedeće:

  • dvije hitne ekspertne posjete (Bugarska i Srbija) u cilju procjene spremnosti veterinarskih sustava za upravljanjem epidemijama u zahvaćenim zemljama članicama, posebice obzirom na kapacitete službeno određenih laboratorija za rano otkrivanje BKK infekcija;
  • na zahtjev obje zemlje članice, pržena je hitna podrška kroz Program tehničke suradnje IAEA (primarne potrebe u opremi i potrošnom materijalu iznosile su po 50.000 eura za svaku zemlju);
  • dva trening tečaja o tehnikama otkrivanja / razlikovanja BKK virusa organizirana su u IAEA laboratorijima u Seibersdorfu, od 15. do 19. kolovoza 2016. i od 22. do 26. kolovoza 2016. godine. 37 sudionika iz 23 zemlje članice IAEA europske regije su prisustvovala ovim trening tečajevima;
  • svakom suradnom laboratoriju na trening tečajevima dan je komplet alata za hitnu dijagnostiku, dovoljan za oko 500 testova, kao i usklađeni set standarnih operativnih procedura za isporučene tehnike;
  • pristup besplatnim uslugama genetskog sekvenciranja u cilju omogućavanja dubljeg razumijevanja molekularne epidemiologije cirkulirajućih BKK virusa;
  • radionica sa raspravom o iskustvima, uspjehu i budućim akcijama održana je od 21. do 25. studenog 2016. godine. Podržalo ju je 10 eksperata s dugogodišnjim iskustvom sa BKK i Capripoxvirus infekcijama.

Isporučene tehnike sadržavale su dijagnostičke algoritme za određivanje i razlikovanje BKK infekcija, kako slijedi:

  • Pan-capripox kvantitativno real-time PCR (qPCR) TaqMan polje.
    Polje pojačava 89bp fragment SPP, GTP i BKK virusa ORF074 koji enkodira intracelularni protein P32 virusne ovojnice [Bowden T et al. (2008): Virology 371, 380–393; Stubbs S et al. (2012): Journal of Virological Methods 179, 419–422];
  • Kratki fragment konvencionalne PCR za pojačavanje dijela 30kD RNA polimeraze RPO30 gena [Lamien CE et al. (2011): Veterinary Microbiology 149, 30–39]. Tehnika se koristi za istovremeno određivanje svih Capripox virusa i dozvoljava deferencijaciju SPP od GTP/BKK virusa. Isto može biti korišteno za analizu sekvenci.
  • Dugi fragment konvencionalne PCR za pojačavanje dijela 30kD RNA polimeraze RPO30 gena [Esayas G. et al. (2015): Antiviral Research 119, 28–35]. Tehnika se koristi za analizu sekvenci.
  • Real-time PCR metoda za istovremeno određivanje, kvantifikaciju i razlikovanje Capripox virusa korištenjem fluorescence melting curve analysis [Lamien CE. et al. (2011): Journal of Virological Methods, Volume 171(1), 134–140].
  • Trening za primjenu besplatnog APHS-ovog paketa usluga sekvenciranja, koji uključuje pripremu uzorka, podnošenje, slaganje i poravnanje sekvenci i interpretaciju genetskog stabla.

Joint FAO/IAEA Division će nastaviti svoju podršku zemljama članicama u njihovoj pripremljenosti za odgovor na izazove nadolazećih bolesti životinja, uključujući i bolesti sa zoonotskim potencijalom.


* Podatci temeljeni na izvješćima FAO-EMPRES-i

Outbreaks of lumpy skin disease in Europe and the support of the Joint FAO/IAEA Division in dissemination of early detection and response tools


Ivancho Naletoski, Animal Production and Health Section, Joint FAO/IAEA, Division for Nuclear Applications in Food and Agriculture, Vienna, Austria
The Lumpy Skin Disease of cattle was traditionally considered endemic in Africa and as an exotic disease in Europe. The disease was introduced in Turkey in August 2013, and until July 2016 it caused 237 outbreaks in the country. In August 2015, the disease spread to Greece, causing 218 outbreaks until August 2016. The disease has rapidly spread to Bulgaria and Macedonia (April 2016), in Serbia (June 2016), Montenegro (July 2016) causing 202, 181, 219 and 63 outbreaks respectively*.
The European countries did not have experience with the control of the disease (strategies to be used, basically test-and-slaughter or vaccine strategy), however, it seems that the techniques for rapid and sensitive detection of the virus, essential for scientifically based decision making and response to the disease were mostly lacking.
The Animal Production and Health Sub-programme (APHS) of the Joint FAO/IAEA Division in Vienna, Austria has a historical experience in the development and dissemination of such tools among Member States (MS) of FAO and IAEA. Therefore, in accordance with its mandate, several emergency actions were undertaken to support the MS in their efforts to control LSD. These actions included:

  • Two emergency expert visits (Bulgaria and Serbia) to evaluate on-the-site the preparedness of the veterinary services in the affected MSs to manage the outbreaks, especially related to the capacities of the officially designated laboratories to early detect LSD infections;
  • Upon request of both MSs, an emergency support through the Technical Cooperation Programme of IAEA was delivered (priority needs in equipment and consumables in a value of 50.000 euros per country);
  • Two training courses on the techniques for detection / differentiation of the LSD virus were organized at the IAEA laboratories in Seibersdorf, from 15-19 August 2016 and 22-26 August 2016. Thirty-seven (37) participants from 23 MS of the IAEA European region attended the training courses;
  • Emergency diagnostic toolkit to each participating laboratory at the training courses was delivered comprised of complete kit of reagents sufficient for ~ 500 runs, as well as the harmonized set of SOPs for the delivered techniques;
  • Access to a free-of-charge genetic sequencing services to enable counterparts in depth understanding of the molecular epidemiology of circulating LSD viruses;
  • A workshop discussing the experiences, success and the actions for the future will be held from 21-25 November 2016. The workshop will be supported by 10 experts with long term experience in capripox virus infections and LSD.

The techniques delivered included a diagnostic algorithm for detection and differentiation of LSD infections, as follows:

  • A pan-capripox quantitative real-time PCR (qPCR) TaqMan assay.-The assay amplifies an 89 bp fragment of the SPPV, GTPV and LSDV ORF074 which encodes the intracellular mature virion envelope protein P32 [Bowden T et al. (2008): Virology 371, 380–393; Stubbs S et al. (2012): Journal of Virological Methods 179, 419–422];
  • The short fragment conventional PCR for amplification of a portion of the 30kD RNA polymerase of the RPO30 gene [Lamien CE et al. (2011): Veterinary Microbiology 149, 30–39]. The technique is used for simultaneous detection of all capripox viruses and allows for differentiation of SPPV from GTPV/LSDV. The same can be used for sequence analysis.
  • The long fragment conventional PCR for amplification of a portion of the 30kD RNA polymerase of the RPO30 gene [Esayas G. et al. (2015): Antiviral Research 119, 28–35]. The technique is used for sequence analysis.
  • Real time PCR method for simultaneous detection, quantitation and differentiation of capripoxviruses using fluorescence melting curve analysis [Lamien CE. et al. (2011): Journal of Virological Methods, Volume 171(1), 134–140].
  • Training in the use of the free-of-charge sequencing services package of the APHS, which includes sample preparation, submission, sequence assembly and alignment, and interpretation of the genetic trees.

The Joint FAO/IAEA Division will continue supporting MS in their preparedness for response to upcoming animal disease challenges, including diseases with zoonotic impact.


* Records based on the reports from FAO-EMPRES-i

Vezano:


Vezani sadržaji

Mačji pankreatitis: dobro poznato, ali ponekad misteriozno

Urednik

Izazovi veterinarske medicine na području pčelarstva

Urednik

Akademik Ivo Tomašec – u povodu 120. obljetnice njegova rođenja

Urednik

U Veterinarskom zavodu Vinkovci otvoren novi laboratorij za dijagnostiku afričke svinjske kuge

Urednik

Održan simpozij “Suvremeni pristupi u prevenciji i kontroli bolesti pčela”

Urednik

Gljivične bolesti u veterinarskoj kliničkoj praksi – izazovi dijagnostike i liječenja

Urednik

Ova web stranica koristi kolačiće radi poboljšanja korisničkog doživljaja pri njezinom korištenju. Korištenjem ove stranice suglasni ste s tim. Prihvati Više